

Evolving Reinforcement Learning Algorithms

Motivation

- Desire general purpose RL algorithms without manual effort.
- Problem: Meta-learn RL algorithms that generalize.

- RL algorithm as a learned optimizer
- Meta-learn the optimizer
 - Improved performance
 - Generalizable
 - Interpretable
 - Scale with compute 0

<u>Overview</u>

- **Insight:** RL algorithm as a computational graph
- **Method:** Evolve population of graphs by mutating, training, and evaluating RL agents
- **Result:** Learn new algorithms which generalize to unseen environments

Prior Work

- Genetic Programming
 - Holland 1975, Koza 1993, Schmidhuber 1987
 - AutoML: Zoph & Le 2016, Hutter 2018, Real et al. 2020
 - Mostly applied to SL
- Meta-learning in RL
 - Adaptation: Finn & Levine 2018
 - **RNNs:** Duan et al. 2016, Wang et al. 2017
 - Not domain agnostic
- Learning RL Algorithms
 - **Metagradients**: Kirsch et al. 2020, Oh et al. 2020
 - Not interpretable
 - **Exploration**: Alet et al. 2020

https://sites.google.com/view/evolvingrl

RL Algorithm as a Computational Graph

Computational graph computes loss function for agent to optimize.

 $L_{DQN} = (Q_{\theta}(s_t, a_t) - (r_t + \gamma * \max Q_{\theta'}(s_{t+1}, a)))^2$

Example graph for DQN loss function which computes Bellman squared error using two Q value networks.

- Directed acyclic graph computes DQN style loss function for value-based agent
- Node types include neural network operators to support more complex architectures
- Data types allows for type checking and ruling out invalid graphs
- Functional equivalence checker skips graphs that are functionally the same
- Representation is expressive, interpretable, and generalizable

Operation	Input Types	Output Type
Add	Ж, Ж	X
Subtract	Ж, Ж	X
Max	Ж, Ж	X
Min	Ж, Ж	X
DotProduct	X, X	\mathbb{R}
Div	X, X	X
L2Distance	Ж, Ж	R
MaxList	$List[\mathbb{R}]$	\mathbb{R}
MinList	$List[\mathbb{R}]$	$\mathbb R$
ArgMaxList	$List[\mathbb{R}]$	\mathbb{Z}
SelectList	$List[X], \mathbb{Z}$	X
MeanList	List[X]	X
VarianceList	List[X]	X
Log	X	X
Exp	X	X
Abs	X	X
$(C)NN: \mathbb{S} \to List[\mathbb{R}]$	S	$List[\mathbb{R}]$
$(\mathrm{C})\mathrm{NN}{:}\mathbb{S}\to\mathbb{R}$	S	R
$(\mathrm{C})\mathrm{NN}{:}\mathbb{S}\to\mathbb{V}$	V	$\mathbb V$
Softmax	$List[\mathbb{R}]$	\mathbb{P}
KLDiv	\mathbb{P},\mathbb{P}	$\mathbb R$
Entropy	\mathbb{P}	\mathbb{R}
Constant		1, 0.5, 0.2, 0.1, 0.01
MultiplyTenth	X	X
Normal(0, 1)		\mathbb{R}
Uniform(0, 1)		\mathbb{R}

Evolve Population of RL Algorithms

- Initialize population of ~ 300 RL algorithms with randomized computation graphs
- Evaluate performance by training over set of diverse but cheap envs.
- Mutate most promising algorithms to spawn new agents for evaluation
- Regularized Evolution removes oldest algorithms from population
- Hurdle env. stops bad algorithms early
- Can bootstrap from existing algorithms
- Evolutionary method can scale with compute

John D. Co-Reyes, Yingjie Miao, Daiyi Peng, Esteban Real, Sergey Levine, Quoc V. Le, Honglak Lee Aleksandra Faust

Learned Algorithms

 $Y_t = r_t + \gamma * \max_a Q_{targ}(s_t, a), \text{ and } \delta = Q(s_t, a_t) - Y_t.$

$$L_{\text{DQNClipped}} = \max\left[Q(s_t, a_t), \delta^2 + Y_t\right] + \max\left[Q(s_t, a_t) - Y_t, \gamma(\max_a Q_{targ}(s_t, a))^2\right]$$

DQNClipped as constrained optimization

 $L_{\text{DQNReg}} = 0.1 * Q(s_t, a_t) + \delta^2$

• DQNReg as entropy regularization

• Learned algorithms prevent value overestimation in different ways <u>Results</u>

• Outperform baselines on train envs

Generalize to unseen environments.

44127.0

35466.0

65516.0

Benefits on Atari even though training envs. were non-image based

Future Work

• Extensions to actor critic, offline RL, representation learning

39544.0

- Analyze and incorporate learned algorithms into existing ones
- Machine assisted algorithm development

RoadRunner

