
Evolving Reinforcement Learning Algorithms

Motivation

● Directed acyclic graph computes DQN style 
loss function for value-based agent

● Node types include neural network operators 
to support more complex architectures

● Data types allows for type checking and ruling 
out invalid graphs

● Functional equivalence checker skips graphs 
that are functionally the same

● Representation is expressive, interpretable, 
and generalizable

• Desire general purpose RL algorithms without manual effort.
• Problem: Meta-learn RL algorithms that generalize.

RL Algorithm as a Computational Graph
Computational graph computes loss function for agent to optimize.

Overview

● Outperform baselines on train envs.

John D. Co-Reyes, Yingjie Miao, Daiyi Peng, Esteban Real, 
Sergey Levine, Quoc V. Le, Honglak Lee Aleksandra Faust

• RL algorithm as a learned 
optimizer

• Meta-learn the optimizer
○ Improved performance
○ Generalizable
○ Interpretable
○ Scale with compute
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● Insight: RL algorithm as a computational graph
● Method: Evolve population of graphs by mutating, training, and 

evaluating RL agents
● Result: Learn new algorithms which generalize to unseen 

environments

Prior Work 
● Genetic Programming

○ Holland 1975, Koza 1993, Schmidhuber 1987
○ AutoML: Zoph & Le 2016, Hutter 2018, Real et al. 2020
○ Mostly applied to SL

● Meta-learning in RL
○ Adaptation: Finn & Levine 2018
○ RNNs: Duan et al. 2016, Wang et al. 2017
○ Not domain agnostic

● Learning RL Algorithms
○ Metagradients: Kirsch et al. 2020, Oh et al. 2020
○ Not interpretable
○ Exploration: Alet et al. 2020
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Learned Algorithms

● Generalize to unseen environments.

● Benefits on Atari even though training envs. were non-image based

https://sites.google.com/view/evolvingrl

● DQNClipped as constrained optimization

● DQNReg as entropy regularization

Example graph for DQN loss function which computes Bellman squared error using two Q value networks.

● Initialize population of ~ 300 RL algorithms with randomized 
computation graphs

● Evaluate performance by training over set of diverse but cheap envs.
● Mutate most promising algorithms to spawn new agents for evaluation
● Regularized Evolution removes oldest algorithms from population
● Hurdle env. stops bad algorithms early
● Can bootstrap from existing algorithms
● Evolutionary method can scale with compute

Results
● Learned algorithms prevent value overestimation in different ways

Future Work
● Extensions to actor critic, offline RL, representation learning
● Analyze and incorporate learned algorithms into existing ones
● Machine assisted algorithm development


