
Evolving Reinforcement Learning Algorithms

Motivation

● Directed acyclic graph computes DQN style 
loss function for value-based agent

● Node types include neural network operators 
to support more complex architectures

● Data types allows for type checking and ruling 
out invalid graphs

● Functional equivalence checker skips graphs 
that are functionally the same

● Representation is expressive, interpretable, 
and generalizable

• Desire general purpose RL algorithms without manual effort.
• Problem: Meta-learn RL algorithms that generalize.

RL Algorithm as a Computational Graph
Computational graph computes loss function for agent to optimize.

Overview

● Outperform baselines on train envs.

John D. Co-Reyes, Yingjie Miao, Daiyi Peng, Esteban Real, 
Sergey Levine, Quoc V. Le, Honglak Lee Aleksandra Faust

• RL algorithm as a learned 
optimizer

• Meta-learn the optimizer
○ Improved performance
○ Generalizable
○ Interpretable
○ Scale with compute

Node Types

Inputs

Operators

Parameters

Output

Data Types

State

Action

Float

List

Probability

Vector

● Insight: RL algorithm as a computational graph
● Method: Evolve population of graphs by mutating, training, and 

evaluating RL agents
● Result: Learn new algorithms which generalize to unseen 

environments

Prior Work 
● Genetic Programming

○ Holland 1975, Koza 1993, Schmidhuber 1987
○ AutoML: Zoph & Le 2016, Hutter 2018, Real et al. 2020
○ Mostly applied to SL

● Meta-learning in RL
○ Adaptation: Finn & Levine 2018
○ RNNs: Duan et al. 2016, Wang et al. 2017
○ Not domain agnostic

● Learning RL Algorithms
○ Metagradients: Kirsch et al. 2020, Oh et al. 2020
○ Not interpretable
○ Exploration: Alet et al. 2020

Evolve Population of RL Algorithms

Evaluate

Spawn new training agent

Mutator

Select best algorithm

RL Agent Population Training

Training Envs.

Hurdle Env.

Training Envs.

Hurdle Env.

Training Envs.

Hurdle Env.

Training Envs.

Hurdle Env.

Test Envs.

Learned Algorithms

● Generalize to unseen environments.

● Benefits on Atari even though training envs. were non-image based

https://sites.google.com/view/evolvingrl

● DQNClipped as constrained optimization

● DQNReg as entropy regularization

Example graph for DQN loss function which computes Bellman squared error using two Q value networks.

● Initialize population of ~ 300 RL algorithms with randomized 
computation graphs

● Evaluate performance by training over set of diverse but cheap envs.
● Mutate most promising algorithms to spawn new agents for evaluation
● Regularized Evolution removes oldest algorithms from population
● Hurdle env. stops bad algorithms early
● Can bootstrap from existing algorithms
● Evolutionary method can scale with compute

Results
● Learned algorithms prevent value overestimation in different ways

Future Work
● Extensions to actor critic, offline RL, representation learning
● Analyze and incorporate learned algorithms into existing ones
● Machine assisted algorithm development


